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Abstract
�e primal variational formulation of the fourth-order Cahn–Hilliard equation requires C

1-
continuous �nite element discretizations, e.g., in the context of isogeometric analysis. In this
paper, we explore the variational imposition of essential boundary conditions that arise from
the thermodynamic derivation of the Cahn–Hilliard equation in primal variables. Our formula-
tion is based on the symmetric variant of Nitsche’s method, does not introduce additional de-
grees of freedom and is shown to be variationally consistent. In contrast to strong enforcement,
the new boundary condition formulation can be naturally applied to any mapped isogeomet-
ric parametrization of any polynomial degree. In addition, it preserves full accuracy, including
higher-order rates of convergence, which we illustrate for boundary-��ed discretizations of sev-
eral benchmark tests in one, two and three dimensions. Un��ed Cartesian B-spline meshes con-
stitute an e�ective alternative to boundary-��ed isogeometric parametrizations for constructing
C

1-continuous discretizations, in particular for complex geometries. We combine our varia-
tional boundary condition formulation with un��ed Cartesian B-spline meshes and the �nite
cell method to simulate chemical phase segregation in a composite electrode. �is example, in-
volving coupling of chemical �elds with mechanical stresses on complex domains and coupling of
di�erent materials across complex interfaces, demonstrates the �exibility of variational boundary
conditions in the context of higher-order un��ed isogeometric discretizations.

Keywords: Variational boundary conditions, the Nitsche method, Cahn–Hilliard equation,
Isogeometric analysis, Finite cell method, Composite electrode

1. Introduction

�e Cahn–Hilliard equation is a fourth-order partial di�erential equation that was proposed
as the evolution equation for a conserved order parameter [1, 2], preserved during phase trans-
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formation in the absence of an external �ux. Its primal variational formulation contains second-
order di�erential operators, which requires globally C

1-continuous basis functions, when a �-5

nite element discretiatzion is sought. Alternative strategies include mixed formulations, where
the Cahn–Hilliard equation is rewri�en into two coupled equations, and discontinuous Galerkin
methods. A mixed formulation is based on introducing an additional variable, which can be a
nonlocal species concentration [3], or the chemical potential [4]. Discontinous Galerkin meth-
ods for the Cahn–Hilliard equation require �ux formulations that enforce the C

1-continuity in10

a weak sense [5–7]. Both approaches reduce the requirement of continuity of the elements, so
that standard C

0-continuous basis functions can be used, but lead to larger discrete systems due
to additional degrees of freedom.

Isogeometric analysis [8] is another alternative that has received increasing a�ention in the
context of Cahn–Hilliard based simulation over the last years [9–16]. Isogeometric analysis uses15

higher-order continuous spline basis functions and can therefore treat higher-order di�erential
operators in a straightforward fashion. In isogeometric discretizations of the primal formulation,
however, special a�ention has to be paid to enforce an essential boundary condition that arises
from the thermodynamic derivation of the Cahn–Hilliard equation and states that the normal
gradient of the concentration must be zero.20

�is condition has turned out to be di�cult to enforce. In Gomez et al. [9], this problem
is avoided by imposing periodic boundary conditions with periodic B-spline basis functions.
Employing quadratic shape functions in rectangular/cuboid grids, Liu et al. [10] imposed this
condition by se�ing two consecutive boundary control values to be equal. Dalcin et al. [16]
developed an “unclamping algorithm” to adapt higher-order open knot vectors to the desired25

continuity across the boundary, that can be applied to enforce periodic boundary conditions.
However, these variants of strongly imposing essential boundary conditions are o�en limited
by constraints on the geometric parametrization, in terms of the polynomial degree, a Cartesian
grid, or the presence of control axes that are perpendicular to the boundary. Alternatively, An-
ders et al. [11] and Zhao et al. [12] imposed this boundary condition using Lagrange multipliers,30

which is less restrictive in terms of isogeometric discretizations and their polynomial degree, but
again requires additional degrees of freedom.

�e �rst objective of this paper is to explore a di�erent boundary condition formulation for
the Cahn–Hilliard equation that is free of geometric constraints, accommodates arbitrary poly-
nomial degrees and preserves higher-order accuracy and convergence, and directly generalizes35

to un��ed discretizations and embedded surfaces. It is based on the original idea of Nitsche who
developed a variationally consistent penalty method for weakly enforcing Dirichlet boundary
conditions that is symmetric and free of auxiliary �elds [17]. �e variational consistency of the
symmetric Nitsche method allows the reinterpretation of the penalty parameter as a mesh de-
pendent stabilization parameter that needs to be chosen su�ciently large in order to maintain40

stability of the bilinear form [18–21]. �e second objective of this paper is to combine the vari-
ational boundary condition formulation with un��ed B-spline discretizations and the �nite cell
method [22, 23]. �e resulting framework, enabled by variational boundary conditions, signi�-
cantly facilitates the analysis of Cahn–Hilliard based models on complex irregular geometries in
three dimensions.45

Our paper is organized as follows: In Section 2, we �rst review the derivation of the Cahn–
2



Hilliard equation in a thermodynamic context, with particular emphasis on the additional es-
sential boundary conditions. We then derive the variational Nitsche formulation, building on
related work for other fourth-order di�erential equations [24, 25]. As a special case, the formu-
lation for periodic boundary conditions is discussed. In Section 3, a brief overview of numerical50

techniques which are used in this paper is given. In particular, isogeometric analysis with �t-
ted geometry and the �nite cell method based on isogeometric discretizations are reviewed. In
Section 4, several numerical examples in one, two and three dimensions are considered in the
context of boundary-��ed isogeometric analysis that demonstrate the performance of the new
formulation in terms of accuracy and geometric �exibility. In Section 5, we consider the charging55

process of a particle in the composite electrode of a lithium-ion ba�ery [26, 27]. We �rst review
the governing equations in the composite electrode, and then demonstrate accuracy and �exibil-
ity of the resulting framework for solving the primal formulation of the Cahn–Hilliard equation
on irregular particle geometries with higher-order continuous basis functions. Section 6 puts our
variational formulation and numerical results into perspective and motivates future work.60

2. �eCahn–Hilliard equation and its variational formulationwith theNitschemethod

We begin with a review of the Cahn–Hilliard equation in a thermodynamics context, the
associated initial boundary value problem and its variational formulation. In particular, a cor-
responding Nitsche extension for weakly enforcing essential boundary conditions is introduced,
including the periodic case.65

2.1. Derivation of the Cahn–Hilliard equation from thermodynamics
Following the theory of Cahn and Hilliard [1, 2], a binary solution system is considered, where

the evolution of the non-uniform mole fraction (or normalized concentration) of one component
c over time t is given by

∂c

∂t
= −∇ · j, (1)

where the �ux j is de�ned as70

j = −Mc∇µ. (2)

Here, M represents a degenerated mobility in the limit of c = 1, expressed as M = 1− c in this
paper. �e chemical potential is de�ned as the variational derivative of the total free energy with
respect to the species concentration:

µ = δcΨ = δc

∫
Ω

(
ψc + 1

2κ|∇c|2
)

dΩ, (3)

where the bulk chemical energy density ψc prescribes a double-well function, allowing for the
coexistence of two phases. �e term containing ∇c represents an energetic penalty for the phase75

interface and κ is a parameter related to the interfacial thickness. In the limit of κ → 0, the
interfacial thickness approaches 0. For a detailed discussion of the theory that forms the basis for
determining the interfacial thickness, interested readers are referred to for example our previous
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work [12]. Since

δΨ = δ
∫

Ω

(
ψc + 1

2κ|∇c|2
)

dΩ =
∫

Ω

(
dψc
dc − κ∆c

)
δc dΩ +

∫
∂Ω
κ∇c · n δc dΓ, (4)

the chemical potential is derived as80

µ = dψc
dc − κ∆c, (5)

under the condition that κ∇c · n = 0 on the entire boundary ∂Ω. In this paper, we consider a
regular solution model, the details of which can be found in the book by Guggenheim [28]. �e
bulk chemical free energy ψc is given as

ψc = c ln c+ (1− c) ln (1− c) + χc (1− c) , (6)

where the positiveχ is an interchange-energetic parameter to indicate a non-ideal mixture. χ > 2
gives a non-convex ψc, allowing for two coexisting phases. �e corresponding �ux j is then85

expressed as
j = −{[1− 2χc (1− c)]∇c− c (1− c)∇ (κ∆c)} . (7)

2.2. Strong form of the initial boundary value problem
�e above discussion gives rise to the following problem in strong form: �nd the concentra-

tion c : Ω× (0,T)→ R such that

∂c

∂t
= ∇ · {[1− 2χc (1− c)]∇c− c (1− c)∇ (κ∆c)} in Ω× (0,T) . (8)

satisfying the set of boundary conditions90

c = ĉ on Γc × (0,T) , (9)
{[1− 2χc (1− c)]∇c− c (1− c)∇ (κ∆c)} · n = ĵ on Γj × (0,T) , (10)
κ∇c · n = 0 on ∂Ω× (0,T) , (11)

and the initial condition

c(x, 0) = c0(x) on Ω. (12)

�e �rst two boundary terms denote Dirichlet and Neumann conditions, with a given concentra-
tion ĉ and boundary �ux ĵ. �e corresponding Dirichlet and Neumann boundaries Γc and Γj are
complementary subsets of the complete domain boundary ∂Ω. Eq. (11) is an additional essential
boundary condition that holds on ∂Ω. Motivated in (4) and (5), it ensures consistency with the95

variational derivation.
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2.3. Nitsche’s method for the Cahn–Hilliard equation
In the spirit of Nitsche’s method for fourth-order problems [5, 24, 25], the following varia-

tional formulation with weakly enforced boundary conditions for the Cahn–Hilliard equation
can be derived: �nd c ∈ S × (0,T) such that for all δc ∈ V × (0,T)100 ∫

Ω

∂c

∂t
δc dΩ +

∫
Ω

[1− 2χc (1− c)]∇c ·∇δc dΩ +
∫

Ω
(1− 2c)κ∆c∇c ·∇δc dΩ

+
∫

Ω
c (1− c)κ∆c∆δc dΩ−

∫
Γc

{[1− 2χc (1− c)]∇c− c (1− c)∇ (κ∆c)} · n δc dΓ

−
∫

Γc

c∇ (κ∆δc) · n dΓ + α1

∫
Γc

cδc dΓ−
∫
∂Ω
κc (1− c) ∆c (∇δc · n) dΓ

−
∫
∂Ω
κc (1− c) (∇c · n) ∆δc dΓ + α2

∫
∂Ω

(∇c · n) (∇δc · n) dΓ

=
∫

Γj

jδc dΓ−
∫

Γc

ĉ∇ (κ∆δc) · n dΓ + α1

∫
Γc

ĉ δc dΓ.

(13)

�e spaces spanned by the basis functions for approximation and weighting are S = H2 and
V = H2, where H2 is the space of square integrable functions with square integrable �rst and
second derivatives [24]. �e stabilization parameters α1 and α2 need to be chosen large enough
as to guarantee stability of (13). �e terms de�ned on the Dirichlet boundary Γc and associated
stabilization with α1 weakly enforce a given concentration ĉ. �e terms de�ned on the com-105

plete domain boundary ∂Ω and associated stabilization with α2 weakly enforce that the normal
derivative is zero.

To show the consistency of the variational form (13) with the strong form of the boundary
value problem Eq. (8)–(11), we apply repeated integration by parts to Eq. (13). �is results in∫

Ω

∂c

∂t
δc dΩ−

∫
Ω
∇ · {[1− 2χc (1− c)]∇c− c (1− c)∇ (κ∆c)} δc dΩ

+
∫

Γj

({[1− 2χc (1− c)]∇c− c (1− c)∇ (κ∆c)} · n− j) δc dΓ

−
∫

Γc

(c− ĉ)∇ (κ∆δc) · n dΓ + α1

∫
Γc

(c− ĉ) δc dΓ

−
∫
∂Ω
κc (1− c) (∇c · n) ∆δc dΓ + α2

∫
∂Ω

(∇c · n) (∇δc · n) dΓ = 0, (14)

With the argument that (14) must hold for arbitrary weighting functions δc, we can identify the110

strong form of the boundary value problem Eq. (8)–(11).
Remark: In the scope of this work, the stabilization parametersα1 andα2 are chosen empirically.
�ey can also be estimated by global or element-wise eigenvalue problems as shown for example
in [24, 25, 29].

2.4. Periodic boundary conditions115

A typical situation is the evolution of a concentration �eld from a random initial state on
a rectangular or cuboid domain under periodic boundary conditions. �erefore, we extend the
Nitsche formulation to the case of periodic boundary conditions.
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Let Γ− and Γ+ denote the entry and exit boundary of a periodic box Ω, which satis�es Γ− ∪
Γ+ = ∂Ω and Γ− ∩ Γ+ = ∅. x− ∈ Γ− and x+ ∈ Γ+ are two matching boundary points with120

constituents (·)− and (·)+, respectively. We note that we will use the condition∫
Γ−

(·) dΓ =
∫

Γ+
(·) dΓ, (15)

assuming that Γ− and Γ+ are geometrically symmetric.
We de�ne the jump operator J·K as

JaK = a− − a+, a ∈ R, (16a)
JaK = a− · n− + a+ · n+, a ∈ Rd, d = 2, 3 (16b)

and the average operator 〈·〉 as

〈a〉 = 1
2
(
a− + a+

)
, a ∈ R, (17a)

〈a〉 = 1
2
(
a− · n− − a+ · n+

)
, a ∈ Rd, d = 2, 3. (17b)

�e general set of boundary conditions Eq. (9)–(11) can then be speci�ed to the following set of125

periodic boundary conditions in strong form:

c− − c+ = JcK = 0, (18)
∇c− · n− + ∇c+ · n+ = J∇cK = 0, (19)
κ∆c− − κ∆c+ = Jκ∆cK = 0, (20)
j− · n− + j+ · n+ = JjK = 0, (21)

where the �ux j is given by Eq. (7). �e boundary condition Eq. (18) is enforced strongly by
se�ing the two matching control values on the corresponding boundaries equal. Further, in
analogy to equation Eq. (13), Eq. (19) and Eq. (21) are imposed weakly using the Nitsche method.
�e corresponding variational statement reads130 ∫

Ω

∂c

∂t
δc dΩ +

∫
Ω

[1− 2χc (1− c)]∇c ·∇δc dΩ +
∫

Ω
(1− 2c)κ∆c∇c ·∇δc dΩ

+
∫

Ω
c (1− c)κ∆c∆δc dΩ−

∫
Γ−
c (1− c) 〈κ∆c〉 J∇δcK dΓ

−
∫

Γ−
c (1− c) J∇cK 〈κ∆δc〉 dΓ + α2

∫
Γ−

J∇cK J∇δcK dΓ = 0, (22)

We again can show consistency with respect to the strong form Eq. (8) and Eq. (18)–(21) by
repeatedly applying integration by parts on (22), which leads to∫

Ω

∂c

∂t
δc dΩ−

∫
Ω
∇ · {[1− 2χc (1− c)]∇c− κc (1− c)∇∆c} δc dΩ
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−
∫

Γ−
JjK δc dΓ +

∫
Γ−
c (1− c) Jκ∆cK 〈∇δc〉 dΓ

−
∫

Γ−
c (1− c) J∇cK 〈κ∆δc〉 dΓ + α2

∫
Γ−

J∇cK J∇δcK dΓ = 0, (23)

Making again use of the argument that (23) must hold for arbitrary weighting functions δc, we can
identify the strong form of the boundary value problem (8) and the periodic boundary conditions
(19)–(21).135

3. Discretization with �tted and un�tted isogeometric �nite elements

Before discussing its numerical performance, we outline the �nite element techniques that
we will use for discretizing the variational framework for the Cahn–Hilliard equation derived in
the previous section. In the scope of the present work, we only provide a brief overview of the
di�erent components of the discretization technology, but add ample references that will guide140

the interested reader to the pertinent literature.

3.1. Isogeometric analysis and higher-order continuous basis functions
Isogeometric analysis [8, 30] is an isoparametric �nite element method. It uses smooth and

higher-order spline basis functions, ubiquitous in computer aided geometric design (CAD) to
represent geometric objects, for the representation of the geometry and the approximation of145

solutions �elds. �e original objective of isogeometric analysis has been a be�er integration of
CAD and �nite element analysis. However, isogeometric analysis has turned out to o�er signi�-
cant additional bene�ts. For problems with smooth solutions, it exhibits increased accuracy and
robustness on a per-degree-of-freedom basis [22, 31, 32]. Unlike C

0-continuous basis functions,
the higher modes of spline basis functions do not diverge with increasing degree, but achieve150

almost spectral accuracy that improves with degree [33–35]. Approximations of derivative �elds
are smooth and their degree can be adjusted to what is required by the primal variational formu-
lation [9, 36, 37]. In the present paper, we exploit the higher-order continuity of splines for the
direct discretiaztion of the primal variational form of the Cahn–Hilliard equation.

In this paper, ��ed and un��ed isogeometric meshes based on quadratic and cubic B-splines155

and non-uniform rational B-splines (NURBS) are employed. For details on how to construct these
basis functions and how to implement them e�ciently in �nite element analysis, the readers are
referred for example to [30, 38–40]. Additional background on how to use isogeometric analysis
in the context of the Cahn–Hilliard equations can be found for example in [9, 10, 12, 13, 15, 41].

3.2. �e �nite cell method160

Un��ed �nite element discretizations that do not conform to the boundaries of the physical
domain require two fundamental components beyond standard �nite element technology. First,
they need to be able to enforce Dirichlet boundary conditions at embedded surfaces. In our con-
text, the variational formulation of boundary conditions based on the Nitsche method in Eq. (13)
naturally accommodates this requirement. Corresponding surface integrals do not depend on el-165

ement boundaries and can be de�ned at any embedded surface that intersects the un��ed mesh.
Second, un��ed discretizations rely on a quadrature method that is able to numerically evaluate
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Figure 1: Recursive subdivision based quadrature in the �nite cell method.

surface and volume integrals in cut elements. For evaluating surface integrals in this paper, we
simply introduce a �ne triangulation of each embedded boundary. Each triangle serves as the
basis for generating independent quadrature points, based on standard monomial rules [42, 43],170

each of which can be related to a speci�c element via its global coordinate. For volume quadrature
in cut elements, we adopt the �nite cell method.

�e volume quadrature approach of the �nite cell method employs composed Gauss quadra-
ture, based on a hierarchical decomposition of the original element into quadrature sub-cells [44].
Figure 1 illustrates the concept for a circular domain, embedded in a Cartesian mesh. In a �rst175

step, each cut element is subdivided in sub-cells, constructed in the sense of a quadtree. Starting
from the original cut element, each sub-cell is recursively queried whether it is cut by an embed-
ded boundary. �is query is usually based on a point location operation that determines whether
characteristic points of the sub-cell are inside or outside the physical domain. If cut, the sub-cell
is replaced by four equally spaced sub-cells of the next quadtree level. Partitioning is repeated180

until a prede�ned maximum depth is reached. Each sub-cell is equipped with (p+1)×(p+1) Gauss
points, where p is the polynomial degree of the basis. We note that in addition to standard Gauss
point weights, a geometric weight is required that weights each point according to its quadtree
level. All quadrature points that are located outside the physical domain are discarded.

To clearly distinguish between �nite elements and quadrature sub-cells in Fugure 1, �nite185

elements are plo�ed in black lines, while quadrature sub-cells are plo�ed in blue lines. We em-
phasize again that basis functions for the approximation of the solution �elds are still de�ned
exclusively on the black mesh, while the blue sub-cell structure exists only for de�ning adap-
tive quadrature points, aggregated around the geometric boundary. �e recursive subdivision
approach can be easily adjusted to one or three dimensions in the sense of binary or octrees,190

respectively. It can also be generalized easily to other element shapes such as tetrahedral [45, 46]
elements.

�e recursive subdivision approach is easy to implement, keeps a regular grid structure, and
requires considerably less computational e�ort than non-adaptive schemes. �e process of eval-
uating quadrature points constitutes a major computational cost, but is very well-suited for par-195
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allelization, which requires minimal communication and signi�cantly speeds up �nite cell com-
putations. Due to the �exibility of its quadrature approach, the �nite cell method can operate
with almost any geometric model, ranging from boundary representations in computer aided
geometric design to voxel representations obtained from medical imaging technologies. An im-
portant preliminary is the availability of an e�cient point location query, which can be based200

on CAD tools or explicit voxelization of domains. A more detailed account of the technology
along with a large number of application examples can be found in the recent review article by
Schillinger and Ruess [23].

Schillinger et al. [22, 47] have combined the �nite cell method with higher-order continu-
ous B-spline basis functions for the analysis of volumetric structures based on trimmed spline205

surfaces. In this paper, we will demonstrate the �exibility of the �nite cell method on Cartesian
B-spline meshes for Cahn–Hilliard based simulations on complex geometries.

3.3. Time integration and nonlinear solution
For time integration of the Cahn–Hilliard equation, we employ a simple backward Euler

method with adaptive time step control, where the time step is adjusted based on the number210

of iterations per time step. �e nonlinear system is solved in each time step with a standard
Newton-Raphson iteration scheme. We leverage corresponding existing routines implemented
in the open-source �nite element program FEAP [48] with isogeometric basis functions, to which
we added the recursive subdivision based quadrature approach of the �nite cell method, and the
Nitsche extension for the Cahn–Hilliard equation.215

4. Weakly enforced boundary conditions for the Cahn–Hilliard equation on �tted iso-
geometric parametrizations

We �rst demonstrate the geometric �exibility and higher-order accuracy achieved with vari-
ationally formulated weak boundary conditions in the Cahn–Hilliard equation in the context
of standard boundary-��ed isogeometric analysis. To this end, we consider several numerical220

examples in one, two and three dimensions.

4.1. A 1D bar with two coexisting phases
�e �rst example consists of a bar of length L= 10. �e initial conditions are set as

c(x, 0) =
{

0.2 0 ≤ x ≤ 5
0.8 5 < x ≤ 10. (24)

�e �ux-free boundary conditions are given as

[1− 2χc (1− c)] ∂c
∂x
− c (1− c)κ ∂

3c

∂x3 = 0, x = 0, L, t ∈ (0,T) , (25a)

κ
∂c

∂x
= 0, x = 0, L, t ∈ (0,T) . (25b)

9
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Figure 2: �e numerical solution of the concentration c and the free energy ψ at equilibrium. �e analytical
solution for the two phases are cα = 0.1448 and cβ = 0.8552. �e free energy is ψ = −0.1040 at homo-
geneous phases and the peak value is ψ = −0.03229 when c = cc = 0.5 in the middle of the interface. All
numerical results agree well with the analytical results.

We assume χ = 2.5, so that there are two homogeneous phases at equilibrium with concentra-225

tions cα = 0.1448 and cβ = 0.8552. �e interfacial parameter is set to κ = 0.01.
For a �rst impression, we compute the solution of the Cahn–Hilliard equation with weakly

imposed boundary conditions on 10 cubic B-spline elements. Figure 2 plots the corresponding
concentration c and the free energy ψ at equilibrium (t = 1× 1013), the la�er being computed
as230

ψ = ψc + 1
2κ |∇c|2 = c ln c+ (1− c) ln(1− c) + 2.5 c(1− c) + 5× 10−3| ∂c

∂x
|2. (26)

�ere are two phases and a di�use interface, with the energetic peak in the center, where the
largest concentration gradient occurs. Performing a simple analytical study, we �nd the exact
free energy at ψ = −0.104 in the homogeneous phases, with a peak value of ψ = −0.0323
when c = 0.5. We observe in Figure 2 that the analytical results are accurately reproduced by
the simulation.235

In the next step, we perform a more rigorous convergence study. We know that at equilibrium,
the exact chemical potential µex = 0 holds everywhere in the �eld, while there is no analytical
solution for c. We therefore base our study on the chemical potential

µ = ln c− ln (1− c) + 2.5 (1− 2c)− 1× 10−2 ∂
2c

∂x2 (27)

instead of the concentration c. Since this example does not involve a Dirichlet boundary con-
dition, we only use the stabilization parameter α2. Following the work of Wells et al. [5], the240

penalty parameter α2 is taken as 5/he, where he is the characteristic length of each boundary
element.
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1/he �adratics Cubics �artics
10 7.384 572 153 6× 10−3 1.558 218 872 8× 10−3 3.706 146 150 5× 10−4

20 1.406 218 640 8× 10−3 6.206 652 718 4× 10−5 1.735 348 211 2× 10−5

40 2.545 223 793 7× 10−4 2.520 102 401 1× 10−6 6.359 409 590 3× 10−7

80 4.526 134 289 6× 10−5 1.087 434 154 1× 10−7 2.668 554 221 8× 10−8

160 8.013 044 229 6× 10−6 4.784 878 486 4× 10−9 1.256 771 612 0× 10−9

Table 1: Convergence of

[∫ L

0
(µFEM − µex)2 dx

] 1
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.
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Figure 3: Plot of the convergence of

[∫ L

0
(µFEM − µex)2 dx

] 1
2

.

Table 1 and Figure 3 show the convergence of the error in the L2 norm, computed for µ. We
observe that for quadratic and quartic B-splines, we achieve the optimal convergence rate of two
and four, respectively. For cubic basis functions, we achieve a superconvergent rate of four. �is245

can be explained as follows: Inspection of the free energy ψ (26) indicates that the distribution
of c follows a sigmoid shape, which possesses rotational symmetry with respect to the middle
point of the interface (xc, cc) (see Figure 2) [1]. �is means that in the vicinity of (xc, cc), only
odd power terms are non-zero in a Taylor expansion of c

c(x) = c(xc) +
∑

n=1,3,...
An(x− xc)n = cc +

∑
n=1,3,...

An(x− xc)n, (28)

withAn being the coe�cients of the n-th term. Since µ is a function of c and d2c/dx2, the mono-250

mial components of the polynomial basis functions that have even power must have coe�cients
of zero and therefore do not contribute to the accuracy for µ at equilibrium state. �erefore, odd
degree cubics achieve the same accuracy as quartics in this special case.

We also consider a second scenario, where one of the �ux boundary conditions is replaced
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Figure 4: Evolution of the concentration pro�le with a Dirichlet boundary condition at x = 0 and zero �rst
derivatives at both ends, all weakly enforced.

by a corresponding Dirichlet boundary condition. �e new set reads255

c = 1.0, x = 0, t ∈ (0,T) , (29)

[1− 2χc (1− c)] ∂c
∂x
− c (1− c)κ ∂

3c

∂x3 = 0, x = L, t ∈ (0,T) , (30)

κ
∂c

∂x
= 0, x = 0, L, t ∈ (0,T) . (31)

�e initial condition is the homogeneous concentration

c(x, 0) = 0.1, x ∈ [0,L] . (32)

We enforce both conditions (29) and (31) weakly, which involves two stabilization terms. Follow-
ing Embar et al. [24], we assume a stabilization parameter α1 = 5000/he, that is three orders of
magnitude larger than the second stabilization parameter α2.

Since the �xed concentration c = 1.0 at x = 0 is larger than the equilibrium concentrations260

cα = 0.1448 and cβ = 0.8552, it triggers a continuous in�ux until the overall domain reaches a
homogeneous concentration of c = 1.0. Figure 4 shows the concentration evolution in the bar,
where we use 500 cubic B-spline elements, α1 = 2.5× 105 and α2 = 250. We observe that the
Dirichlet boundary condition is accurately satis�ed at all times.

4.2. Spinodal decomposition in a 2D unit square domain265

In the second example, we consider spinodal decomposition on a unit square from a random
distributed initial concentration �eld. We assume parameters χ = 2.5 and κ = 1.42× 10−4,
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which leads to a characteristic interfacial thickness of 0.0316. �e initial concentration is

c (x, 0) = c̄+ r (33)

where c̄ = 0.63 and r is a random variable with uniform distribution in the range [−0.05, 0.05].
In a �rst step, we examine the evolution under a natural boundary condition. In this case,270

the �ux on all boundaries and the normal gradient of the concentration are zero, the la�er being
enforced weakly by the Nitsche method. Figure 5 shows the evolution of the concentration �eld
at di�erent times, computed with 128 × 128 cubic B-spline elements. It is observed that phase
interfaces are always perpendicular to the boundary when they intersect with the boundary. �is
indicates that the weakly enforced condition of zero normal gradient is accurately satis�ed on275

the complete boundary.
In a second step, we simulate the evolution of the random �eld under weakly enforced pe-

riodic boundary conditions (19)-(21). �e constraint of Eq. (18) is imposed strongly by making
the corresponding two control points on the edge coincide. We assume α2 = 5.0/he. Figure 6
plots simulation results at di�erent time instances, computed again with 128×128 cubic B-spline280

elements. We observe that phase interfaces now continue smoothly from one boundary to the

(a) t = 9.83× 10−3 (b) t = 2.576× 10−2 (c) t = 1.056× 10−1

(d) t = 5.57 (e) t = 62.01 (f) Equilibrium

Figure 5: Spinodal decomposition with natural boundary conditions. Due to the weakly enforced condition
of zero normal gradient, all phase interfaces remain perpendicular to the boundary.
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(a) t = 1.581× 10−2 (b) t = 1.153× 10−1 (c) t = 1.231

(d) t = 10.28 (e) t = 20.41 (f) Equilibrium

Figure 6: Spinodal decomposition under periodic boundary conditions. 1282 cubic quadrilateral elements
are used in this simulation. �e phase interfaces are not perpendicular but continue to the opposite side of the
border when intersected with the box frame.

opposite boundary. �e �nal equilibrium state is a complete circle. �is is di�erent from the pre-
vious case, where only one quarter of the complete sphere is reached at the equilibrium, which
is energetically more favorable. �is can be observed by computing the �nal energy. For both
simulations, a monotonic decrease of the total free energy285

Ψ =
∫

Ω
ψ dΩ =

∫
Ω

[
c ln c+ (1− c) ln (1− c) + 2.5 c (1− c) + 7.1× 10−5 |∇c|2

]
dΩ (34)

with time is observed. Moreover, the �nal total energy of the species under natural boundary
conditions (Figure 7) is lower than that under periodic boundary conditions (Figure 8).

4.3. Spheroidal particles with incoming �ux

As the third example, a 3D prolate spheroid with the aspect ratio 3/2 :
√

2/3 :
√

2/3 is
considered. Due to symmetry, only an octant of the whole spheroid is simulated. Homogeneous290

�ux is applied on the surface for 2 normalized seconds and removed a�erwards. A�er removal of
the �ux, the species in the particle evolves towards the equilibrium. �e simulation parameters
are listed in Table 2. For the simulation, quadratic NURBS shape functions are used. �e mesh and
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Figure 7: Evolution of the total free energy Ψ with di�erent meshes under natural boundary conditions.
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Figure 8: Evolution of the total free energy Ψ with di�erent meshes under periodic boundary conditions.
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Phase parameter χ 2.5
Interface parameter κ 4.25× 10−3

Flux per area ĵ -0.1
Time �ux applied Tapp 2
Initial concentration c0 0.25

Table 2: Simulation parameters for the 3D spheroids

(a) �e 3D mesh.
(b) �e mesh and control points of one plane of symmetry.

Weight
1.000

0.96

0.9

0.84

0.78

0.729

Figure 9: �e mesh and the control points of the prolate spheroid. �e radial control lines are not perpen-
dicular to the surface. A strong imposition of ∇c · n = 0 is not possible. �e weight of each control point is
indicated by the color.

the control points are plo�ed in Figure 9. It is obvious from the �gure that radial control lines are
not perpendicular to the surface, which makes it impossible to impose the boundary condition of295

∇c ·n = 0 strongly as described in [10, 16]. For more details about the mesh readers are referred
to Zhao et al. [12] and Stein et al. [49]. With the examples in this section, we would like to
demonstrate the ability to constrain the boundary condition ∇c · n = 0, when the boundary is
perturbed by an incoming �ux. Figure 10 shows the simulation results at di�erent time instants.
As a comparison, the results with the method described in Zhao et al. [12] is also plo�ed, where300

a Lagrange multiplier λ is introduced for the additional constraint. �e weak formulation reads∫
Ω

∂c

∂t
δc dΩ +

∫
Ω

[1− 2χc (1− c)]∇c ·∇δc dΩ +
∫

Ω
(1− 2c)κ∆c∇c ·∇δc dΩ

+
∫

Ω
c (1− c)κ∆c∆δc dΩ + δ

∫
Ω

Div (λ∇c) dΩ− δ
∫

Ω

1
2αλ

2dΩ =
∫
∂Ω
jδc dΓ

(35)

�e stabilization parameter α in the simulation is chosen empirically as 102. For a be�er compar-
ison, a �xed time step 0.01 is used here. It is shown that the two methods give the same evolution
of the concentration �eld. A core-shell two-phase structure is maintained when the �ux comes
in. �e phase interface initiates on the surface and marches stably towards the center until the305

total amount of �ux is large enough to suppress the phase segregation. �e phase interfaces are
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0.116
Concentration  c

0.2 0.4 0.6 0.8 0.967

(a) t = 0.01 (b) t = 0.44 (c) t = 0.68

(d) t = 1.30 (e) t = 2.20 (f) t = 3.98

Figure 10: Evolution of the concentration in a prolate spheroid with an incoming �ux. �e two octants are
computed with di�erent methods: the lower le� is with the Nitsche method, while the upper right octant is
computed by the method from [12] with a Lagrange multiplier.

not spherical due to the geometry and the �ux. To demonstrate that the constraint ∇c ·n = 0 is
accurately satis�ed, we plot the distribution of its residual on the spheroidal surface in Figure 11.
�e evolution of ∇c · n with time at a representative point P (shown in Figure 11a) is plo�ed
in Figure 11c. From the plots one can observe that both methods show similar behavior for the310

constraint, while the Lagrange multiplier method gives stronger oscillations of ∇c ·n, especially
when the surface is strongly perturbed by the incoming �ux.

5. Simulation of chemical phase segregation in composite electrodes on un�tted Carte-
sian B-spline meshes

In composite electrodes, particles made of active materials, such as silicon, are embedded in315

a matrix. �e matrix usually consists of polymer binders and conductive additives, which are
electrochemically inactive, and o�er the mechanical and electronic support to the active par-
ticles in the composite electrodes [50–52]. �eir amount of content plays a crucial rule in the
performance of lithium-ion ba�eries [53]. However, the study on the interaction between the
particles and the binders is still far less than that on the active electrode particles. Doyle et320

al. [54] presented a cathode cell, which included a wide range of polymeric separator materi-
als, lithium salts, and composite insertion cathodes. Bower et al. [55] formulated a continuum
electro-chemo-mechanical half-cell model in the large deformation framework with plastic �ow.
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Figure 11: Distribution of the residual of ∇c · n on the surface at t = 0.48 with the Nitsche method (a)
and Lagrange multiplier method (b). Both show a similar pa�ern, while the Nitsche method gives a be�er
constraint than the Lagrange multiplier method at that time. For a quantitative comparison, the evolution of
∇c ·n at a representative point P (shown in (a) and (b)) is plo�ed in (c). �e Lagrange multiplier method gives
a stronger oscillation when the surface is perturbed by the incoming �ux, but both methods bring ∇c · n to
zero once the �ux is removed.
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Matrix Ω(2)

c(2), u(2)

Particle Ω(1)

c(1), u(1)
n∗

Γ∗

∂Ω(2)

j̄∗

Figure 12: Composite electrode con�guration: �e particle is constrained by a simply supported matrix.
Di�erent conditions are prescribed weakly at the interface Γ∗ and the matrix boundary ∂Ω(2).

Furthermore, there are multi-scale approaches of lithium-ion ba�ery cells, where the particles
embedded in the polymer binders are modeled at the micro-scale [56, 57]. For a fair represen-325

tation of geometric irregularity, Lee et al. [57] generated the microstructure randomly. As a
more faithful a�empt, Roberts et al. [58] and Mendoza et al. [59] employed the Conformal De-
composition Finite Element Method introduced by Noble et al. [60] for a reconstruction of the
microstructure. Orvananos et al. [61] considered the interaction between electrode nanoparticles
and the interface condition between the particle, where the electrolyte is modeled by a smoothed330

boundary method.
In this section, we present the chemo-mechanical modeling of the composite electrode with

phase segregation and perform un��ed �nite element simulations with the �nite cell method.
�is allows for a �exible representation of irregular geometries.

5.1. Governing equations of the composite electrode335

We consider the one-particle con�guration shown in Fugure 12. �e particle, de�ned on do-
main Ω(1), is embedded in the matrix that occupies Ω(2). �e interface between the two domains
is denoted by Γ∗ = Ω(1) ∩ Ω(2). In each domain, there are two coupled �elds: the displacement
�eld u(p) and the concentration �eld c(p). Mechanically, the matrix and the particle are linear
elastic. Displacements and normal traction across the interface are continuous.340

In each domain, there are two sets of equations that govern the mechanical and the chemical
behavior, respectively. We note that in this section, the domain index p runs from 1 to 2. For the
mechanical part, the local force balance states in each domain Ω(p)

∇ · σ(p) = ∇ ·
(
C(p)ε(p)

)
−K(p)V(p)∇c(p) = 0, (36)
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�e fourth-order elastic tensor C(p) is given as

C(p) = 2G(p)I +
(

K(p) − 2
3G(p)

)
1⊗ 1, (37)

with G(p) and K(p) being the shear and bulk modulus, respectively. I is the fourth-order and 1 is345

the second-order unit tensor. �e strains ε(p) are the symmetric part of the displacement gradient

ε(p) = 1
2

(
∇u(p) +

(
∇u(p)

)T
)
. (38)

�e volumetric strain due to the intercalation of the species is proportional to the concentration,
with proportionality factor as the partial molar volume V(p).

Chemically, lithium cations di�use from the matrix towards the electrode particle. While the350

particle experiences phase segregation upon the incoming �ux and the Cahn–Hilliard equation
applies, the di�usion in the matrix follows the stress assisted Fick law. �erefore, since there exist
phase segregation, inside the particle, the di�usion process is governed by the stress-assisted
Cahn–Hilliard equation

∂c(1)

∂t
= ∇ ·

[
c(1)

(
1− c(1)

)
∇µ(1)

]
= ∇ ·

{[
1− 2χ(1)c(1)

(
1− c(1)

)]
∇c(1) − c(1)

(
1− c(1)

)
κ(1)∇∆c(1)

}
−∇ ·

[
c(1)

(
1− c(1)

) 1
3V(1)∇

(
trσ(1)

)]
in Ω(1) × (0,T) .

(39)

In the matrix, one-phase di�usion takes place as355

∂c(2)

∂t
= ∇ ·

[
c(2)

(
1− c(2)

)
∇µ(2)

]
= ∇ ·

{[
1− 2χ(2)c(2)

(
1− c(2)

)]
∇c(2) − c(2)

(
1− c(2)

) 1
3V(2)∇

(
trσ(2)

)}
in Ω(2) × (0,T) .

(40)

�e parameters χ(1), χ(2) and κ(1) in (39) and (40) have been already introduced in Section 2.1.
�e initial condition in the two materials are

c(1) = c
(1)
0 in Ω(1) (41a)

c(2) = c
(2)
0 in Ω(2) (41b)

For more details on the material model, the readers are referred to our previous work [12].
On the interface between two domains Γ∗, the mechanical compatibility conditions are

u(1) − u(2) = JuK = 0, (42)
σ(1)n∗ − σ(2)n∗ = JσK = 0, (43)
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with n∗ being the normal vector of Γ∗. For the chemical part, mass conservation across the360

interface is expressed as

−
[
c(1)

(
1− c(1)

)
∇µ(1)

]
· n∗ = −j̄∗ on Γ∗ × (0,T) , (44)

−
[
c(2)

(
1− c(2)

)
∇µ(2)

]
· n∗ = −j̄∗ on Γ∗ × (0,T) , (45)

κ(1)∇c(1) · n∗ = 0 on Γ∗ × (0,T) , (46)

where j̄∗ is determined by the reaction rate, which in this paper is assumed constant. �e addi-
tional condition (46) arises due to the Cahn–Hilliard equation (39) as discussed in Section 2.2.

�e boundary conditions on the surface ∂Ω(2) consist of two parts. Mechanically, only min-
imum constraints are applied to the matrix in order to prevent rigid body movement (see Fig-365

ure 12). Chemically, Dirichlet boundary conditions are prescribed as

c(2) = c̄ on ∂Ω(2) × (0,T) . (47)

5.2. �e Nitsche method for the chemo-mechanically coupled multi-�eld problem
�e weak formulation of the problem described in Section 5.1 is

0 =
∑
p=1,2

∫
Ω(p)

∂c(p)

∂t
δc(p) dΩ +

∑
p=1,2

∫
Ω(p)

[
1− 2χ(p)c(p)

(
1− c(p)

)]
∇c(p) ·∇δc(p) dΩ

−
∑
p=1,2

∫
Ω(p)

1
3V(p)c(p)

(
1− c(p)

)
∇
(
trσ(p)

)
·∇δc(p)dΩ

+
∫

Ω(1)

(
1− 2c(1)

)
κ(1)∆c(1)∇c(1) ·∇δc(1) dΩ

+
∫

Ω(1)
c(1)

(
1− c(1)

)
κ(1)∆c(1)∆δc(1) dΩ−

∑
p=1,2

∫
Ω(p)

σ(p) : δε(p) dΩ

−
∫

Γ∗
j̄∗ δc(1) dΓ +

∫
Γ∗
j̄∗ δc(2) dΓ−

∫
Γ∗
〈σ〉 · JδuK dΓ +

∫
Γ∗

JuK · 〈δσ〉 dΓ

−
∫

Γ∗
c(1)

(
1− c(1)

)
κ(1)∆c(1)n∗ ·∇δc(1) dΓ

−
∫

Γ∗
c(1)

(
1− c(1)

)
∇c(1) · n∗κ(1)∆δc(1) dΓ + α2

∫
Γ∗

(
∇c(1) · n∗

) (
∇δc(1) · n∗

)
dΓ.

(48)

�e additional mechanical coupling conditions Eq. (42) and (43) are imposed by the non-symmetric
Nitsche method [62], which o�ers a parameter-free way of weakly enforcing interface con-370

straints. Moreover, its non-symmetrix contributions do not a�ect the symmetry of the sti�ness
matrix, since in the chemo-mechanically coupled problem, the sti�ness matrix is already non-
symmetric.

5.3. �e phase segregation inside the particle
As the �rst example, we consider a standalone particle, where we also disregard the mechan-375

ical stresses. In this way, the problem degenerates to a pure Cahn–Hilliard equation in the parti-
cle. �is enables us to monitor the performance of the �nite cell method and to compare it with
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(a) Sub-cells (b) Volume quadratures (c) Surface quadratures

Figure 13: Numerical integration of intersected elements in the �nite cell method. �e volume quadrature
points in (b) are computed based on adaptive subdivision to the third level of the original 103 Cartesian
elements (a). �e boundary condition of ∇c · n = 0 is enforced on the surface represented by corresponding
quadrature points in (c), where an additional �ux is imposed on the immersed surface represented by the blue
points.

corresponding results obtained by isogeometric analysis with an exact geometric description.
Figure 13 illustrates the numerical integration of intersected elements in the �nite cell method.
�adratic B-splines were used as the basis functions for the problem. �e surface is represented380

by a �ne triangulation generated and re�ned automatically from NETGEN [63], where surface
quadrature points are obtained from a standard 6-point formula [64]. �e code has been par-
allelized at the assembly level by OpenMP in the �nite element tool FEAP [48, 65].To test the
scalability of the parallelization, four Newton iterations during the �rst time step of the chemo-
mechanical problem shown in Figure 19 were computed. Figure 14 shows the overall time spent385

on the assembly for di�erent numbers of parallel processes. We observe that a speedup ratio of
8 could be achieved with 12 processors.

Figure 15 shows the evolution of the concentration distribution. A core-shell structure is
maintained during the period of the incoming �ux. As a comparison, we also simulated the same
problem with isogeometric analysis described in Section 4.3. Figure 16 compares the concentra-390

tion and the free energy distribution from the �nite cell method with the isogeometric method
at t = 1.34. We observe that both methods yield a comparable concentration distribution. In
addition, they also yield a comparable energy distribution, involving the �rst derivative of the
primary degree of freedom.

5.4. Mechanically supported di�usion and phase segregation in a composite electrode395

In the next step, we perform simulation of a mechanically coupled problem based on the
formulation described in Section 5.1 and Section 5.2.

Since there are two di�erent materials in the problem, we use two background meshes, which
are coupled at the interface Γ∗ as illustrated in Figure 17. �e two background mesh do not
necessarily to be identical. In this paper, for simplicity, we use two identical meshes.400

�e procedure for an adaptive generation of the quadrature points is the same as illustrated
in Section 5.3, with the only exception that in this problem two sets of volume quadrature points
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Figure 14: Speedup ratio of parallelization of the assembly of the global matrix by OpenMP.�e computation
was performed at the Lichtenberg cluster hpb-nodes at Technical University Darmstadt.

(a) t = 0.027 (b) t = 0.445 (c) t = 1.34

(d) t = 2.04 (e) t = 4.51

Figure 15: Evolution of the concentration in a sphere with an incoming �ux with �nite cell method.
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Figure 16: �e contour plot of free energy (a,c) and concentration (b,d) simulated by IGA and the FCM, at
t = 1.34. For IGA, 103 quadratic elements with NURBS basis functions are used; for FCM, 203 elements
with quadratic B-splines are used and the sub-cell level is 3. �e concentration and free energy distributions
obtained by the two methods are the same.

Ω(1)

Ω(2)

Ω(1)

Ω(2)

Γ∗
Coupling condition

(a) uI(1), cI(1) (b) uI(2), cI(2) (c) uI(1), cI(1), uI(2), cI(2)

+ =

Figure 17: Illustration of the coupling of two materials. �e mesh (a) with the information of the particle
(uI(1), cI(1)) coincides with the mesh (b) with the information of the matrix (uI(2), cI(2)). �e two meshes
couple at the interface Γ∗ in Figure (c). In this paper, the two meshes are identical.
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Particle (Ω(1)) Matrix (Ω(2)) First appear in
Bulk modulus (K) 1 0.1 Eq. (36)

Shear modulus (G) 1 0.1 Eq. (37)
Molar volume (V) 0.08 0.0001 Eq. (36)

Phase parameter (χ) 2.5 1.0 Eq. (39) and Eq. (40)
Interface parameter (κ) 1.247× 10−3 - Eq. (39)

Initial concentration (c0) 0.25 0.9 Eq.(41)
Boundary concentration (c̄) - 0.9 Eq. (47)

Table 3: Material parameters for the composite electrode. All parameters are given in dimensionless form.

need to be generated, as shown in Figure 18.
�e parameters for the simulation are listed in Table 3. �e matrix is ten times so�er than

the particle. We apply an initial perturbing �ux across the interface of 0.01 in the direction of the405

particle core, which is removed a�er 5 seconds.
Figure 19–Figure 21 show the simulation results of composite electrodes with di�erent em-

bedding particles. �e mechanical mechanical constraints are only applied on the matrix to pre-
vent the rigid body movements (see Figure 19a). When the species transfer from the matrix to
the particle, we observe only a slight gradient of the concentration �eld in the matrix, while more410

complex phenomena occur in the particles. For a spherical particle shown in the Figure 19, Li-rich
phase islands start to form from the surface, surrounded by Li-de�cit phase areas. Due to the un-
evenly distributed lithium concentration, the deformation of the particle is also inhomogeneous.
During the period when the �ux is applied, Li-rich phases merge into larger volumes.

We also simulate the same problem for geometrically more complicated electrode particles415

such as con�gurations based on two and three overlapping spheres (see Figures 20) and 21).
�ese examples demonstrate the geometric �exibility of the �nite cell method, which represents
the geometry only via adaptive quadrature points. In both cases, the Li-rich phases emerge from
the ends, since the compressive stresses arising around the bo�lenecks drive the species towards
the ends with tensile stresses. �e Li-rich phases then marche towards the necks and coalesce.420

�e remnant of Li-de�cit phase is due to the incomplete charge. With longer incoming �ux the
particle can be �nally fully charged.

Figure 22 shows the concentration distribution and the deformation of the matrix in the above
three examples at t = 3.0. A homogeneous Dirichlet boundary is prescribed on the outer sur-
face and a small �ux is given. �e concentration variation is not large, which is very di�erent425

from what has been observed in the particle, where the phase-segregation occurs. �e unevenly
distributed concentration pro�le on the interface is due to an uneven deformation and the con-
sequent uneven stress distribution.

6. Summary, conclusions, and outlook

�is paper deals with the formulation of variational boundary conditions for the Cahn–430

Hilliard equation based on Nitscheâs method, with a particular focus on applying this formu-
lation in un��ed �nite element discretizations such as the �nite cell method. �e Cahn–Hilliard
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(a) Geometry (b) Sub-cells

(c) �adratures (V)

(d) Surface (e) �adratures (S)

Figure 18: Work-�ow of producing integration points for the volume and the interface of the composite
electrode. �e spherical particle is embedded in a cubic matrix (a). Based on the geometry, an adaptive
subdivision of level 3 is performed for both the matrix and the particle (b). �e corresponding Gaussian
quadrature points are then produced (c). For the interface (d), the surface quadrature points are produced
based on the surface mesh generated by NETGEN (e).
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Figure 19: Concentration distribution of the composite electrode with one sphere embedded in the matrix
at di�erent times. Minimum mechanical constraints are applied on the matrix to prevent the rigid body
movements (a). A�er the �ux �ows into the particle, two phases emerge from the surface. As the �ux comes
in continuously, islands of Li-rich phases merge together before reaching the �nal state.
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Figure 20: Concentration evolution of the composite electrode with two merged spheres embedded in the
matrix. �e Li-rich phases emerge from the two ends and �nally join at the neck.
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Figure 21: Concentration evolution of the composite electrode with three merged spheres embedded in the
matrix. Similar as the case with two particles in Figure 20, the Li-rich phases emerge from the three ends and
�nally integrate at the necks.
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(a) Single sphere. (b) Two spheres. (c) �ree spheres.

Figure 22: �e concentration and deformation in the matrix at t = 3.00 with di�erent-shaped embedding
particles. On the surface of the particle, a Dirichlet boundary c = 0.9 is prescribed, and only minimum points
are constraint to prevent mechanical rigid body movements. On the interface, an out-going �ux is given.

equation describes the di�usion of species in materials that experience phase segregation. Since
the Cahn–Hilliard equation is a fourth-order partial di�erential equation, shape functions that
are globally C

1-continuous are needed when a straightforward formulation based on primal un-435

knowns is applied. �is raises the questions of how to treat the additional boundary constraint
∇c · n = 0, which in this paper is achieved by weak imposition based on Nitscheâs method.

We successfully demonstrated the accuracy and �exibility of our formulation in the context of
��ed and un��ed spline-based �nite element methods. �is includes a range of test examples in
one, two and three dimensions, such as spinodal decomposition and a prolate spheroidal particle.440

�e results showed that the Nitsche formulation is competitive with alternative method based
on Lagrange multipliers and achieves optimal accuracy. Finally, we demonstrated the versatility
of weak boundary and interface conditions in conjunction with the �nite cell method. To this
end, we computed phase segregation processes in a composite electrode, based on a mechan-
ically coupled Cahn–Hilliard model. We showed that the �nite cell method based on un��ed445

meshes yields the same accuracy than isogeometric analysis based on with geometrically exact
boundary-��ed NURBS discretizations. We then illustrated that the �nite cell method enables
the analysis of geometrically complex particle shapes, which is hardly possible with boundary-
��ed isogeometric analysis. From a modeling point of view, our results show that the mechanical
stresses in�uence the phase segregation in the particle. In particular, we observed that the �ux450

�ows from areas with tensile stresses towards areas with compressions.
Future work will transfer the technology described in this paper to the analysis of real-world

particle con�gurations, whose geometry will be extracted from diagnostic imaging data such as
high-resolution computed tomography scans.
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